Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE301	DESIGN OF CONCRETE STRUCTURES I	3-1-0-4	2016

Pre-requisites: CE202 Structural Analysis I

Course objectives:

- To provide the students with the knowledge of the behavior of reinforced concrete structural elements in flexure, shear, compression and torsion
- To enable them to design essential elements such as beams, columns, slabs staircases and footings under various loads.

Syllabus:

Introduction- Limit State method of design- Analysis of singly reinforced rectangular beams- shear strength of RC beam-design of shear reinforcement-bond and development length- curtailment of reinforcement-design of singly reinforced beams-analysis and design of doubly reinforced beams – simply supported , cantilever- analysis of singly reinforced T-beams -design for torsion-design of one-way slab- cantilever slab- continuous slab (detailing only)- two way slabs- design using code coefficients- Limit State of Serviceability-deflection-cracking -Stair cases- design & detailing-Columns-effective length-design of axially loaded short columns with rectangular ties and helical reinforcement.

Expected Outcomes:

The students will be able to

- i. Apply the fundamental concepts of limit state method
- ii. Use IS code of practice for the design of concrete elements
- iii. Understand the structural behavior of reinforced concrete elements in bending, shear, compression and torsion.
- iv. Design beams, slab, stairs, columns and draw the reinforcement details.
- v. Analyze and design for deflection and crack control of reinforced concrete members.

Text Books / References:

- 1. Pillai S.U & Menon D Reinforced Concrete Design, Tata McGraw Hill Publishing Co., 2005
- 2. Punmia, B. C, Jain A.K and, Jain A.K ,RCC Designs, Laxmi Publications Ltd., 10e, 2015
- 3. Varghese P.C, Limit State Design of Reinforced Concrete, Prentice Hall of India Pvt Ltd,, 2008
- 4. Relevant IS codes (I.S 456, I.S 875, SP 34)

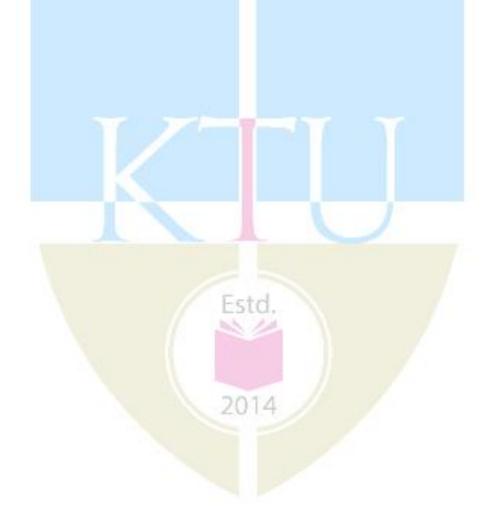
	COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %		
Ι	Introduction- Plain and Reinforced concrete- Properties of concrete and reinforcing steel-Objectives of design-Different design philosophies- Working Stress and Limit State methods-Limit State	9	15		

	method of design-Introduction to BIS code- Types of limit states-			
	characteristic and design values-partial safety factors-types of loads			
	and their factors.			
	Limit State of Collapse in Bending-assumptions-stress-strain			
	relationship of steel and concrete- analysis of singly reinforced			
	rectangular beams-balanced-under reinforced-over reinforced			
	sections-moment of resistance codal provisions			
	Limit state of collapse in shear and bond- shear stresses in beams-	1		
	types of reinforcement-shear strength of RC beam-IS code	V1		
II	recommendations for shear design-design of shear reinforcement-	1		15
11	examples	5	9	15
	Bond and development length - anchorage for reinforcement bars -			
	code recommendations regarding curtailment of reinforcement			
	FIRST INTERNAL EXAMINATION			
	Design of Singly Reinforced Beams- basic rules for design- design			
	example of simply supported beam- design of cantilever beam-			
III	detailing Analysis and design of doubly reinforced beams -		9	15
	detailing, T-beams- terminology- analysis of T beams- examples -			
	Design for torsion-IS code approach- examples.			
	Design of slabs- introduction- one-way and two-way action of slabs			
IV	- load distribution in a slab- IS recommendations for design of		9	15
1 V	slabs- design of one-way slab- cantilever slab- numerical problems		,	15
	– concepts of detailing of continuous slab –code coefficients.			
	SECOND INTERNAL EXAMINATION			
	Two- way slabs- simply supported and restrained slabs – design			
	using IS Code coefficients Reinforcement detailing			
V	Limit State of Serviceability- limit state of deflection- short term		10	20
	and long term deflection-IS code recommendations- limit state of			
	cracking- estimation of crack width- simple numerical examples			
	Stair cases- Types-proportioning-loads- distribution of loads – codal			
	provisions - design and detailing of dog legged stair- Concepts of			
VI	tread-riser type stairs (detailing only)			
	Columns- introduction -classification- effective length- short		10	20
	column - long column - reinforcement-IS specifications regarding			
	columns- limit state of collapse: compression -design of axially			
	loaded short columns-design examples with rectangular ties and			
	helical reinforcement			
	END SEMESTER EXAMINATION			

Note

All designs shall be done as per current IS specifications
 Special importance shall be given to detailing in designs
 During tutorial hours detailing practice shall be done.

4. SI units shall be followed.


5. IS 456-2000 shall be permitted for the End Semester Examination

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1. Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name	L-T-P-Credits	Year Introdu			
CE303	STRUCTURAL ANALYSIS -11	3-0-0-3	201	6		
Pre-requisite: (Pre-requisite: CE201 Mechanics of Solids					
Course objectiv						
	the students with the force and displacement me is of rigid frames and trusses	thods of structural a	nalysis with e	mphasis		
Syllabus :	THEFT	CIC I				
-	Method, Moment Distribution Method, Clape analysis, Beams curved in Plan, Plastic Theory	yrons Theorem (Th	ree Moment I	Equation),		
Expected Outco		YIIY				
The students will i. analyse	If be able to structures using force method					
	structures using displacement method					
5	curved beams in plan					
iv. analyse s	structures using plastic theory					
Text Books :	neth Leet, Chia M Uang & Anne M Gilbert.,	Fundamentals of t	Structural An	alveis		
	raw Hill, 4e, 2010	T undamentals of s	Structural All	lai y 515,		
	aidyanathan and P. Perumal, Structural Anal	lysis Volume I & I	I, Laxmi Pub	olications		
	.td., 2017 ly . C.S., Basic Structural Analysis, Tata Mc	Graw Hill 3e 201	1			
References:	iy . C.S., Dasie Structural Analysis, Tata Me	Graw IIII, 50, 201				
1. Dani	el L Schodak, Structures, Pearson Educatior	n, 7e, 2014				
2. Hibb	eler, RC, Structural analysis, Pearson Educa	tion, 2012				
3. Kinn	ey J. S., Indeterminate Structural Analysis,	Oxford & IBH, 19	66			
4. Negi	L. S. and Jangid R. S, Structural Analysis,	Fata McGraw Hill,	. <mark>19</mark> 97			
5. Rajas 2008	sekaran S. and Sankarasubramanian G., Con	nputational Structu	ral Mechanic	cs, PHI,		
6. S.S.	Bhavikatti, Structural Analysis II, Vikas Pub	olication Houses (I	P) Ltd, 2016			
	(6): Application of Plastic Theory in Design dards, 1972	n of Steel Structure	es, Bureau of	Indian		
8. Time	oshenko S. P. and Young D. H., Theory of S	tructures, McGraw	Hill, 2e, 196	65		
	S, Norris C. H & Wilbur J. B, Elementary					
10. Wang C. K., Intermediate Structural Analysis, Tata McGraw Hill, 1989						
COURSE PLAN						
Module	Contents		Hours	Sem. Exam Marks %		
I Clap	eyrons Theorem (Three Moment Equation)	:Derivation of three	e 7	15		

	moment equation - application of three moment equation for analysis of			
	continuous beams under the effect of applied loads and uneven support			
	settlement.			
	Slope Deflection Method : Analysis of continuous beams- beams with			
II	overhang- analysis of rigid frames - frames without sway and with sway -		7	15
	different types of loads -settlement effects			
	FIRST INTERNAL EXAMINATION			
III	Moment Distribution Method: Moment Distribution method – analysis	1	7	15
111	of beams and frames – non sway and sway analysis.	А	/	15
	Kani's Method: Kani's Method of analysis applied to continuous beams	5		
IV	and single bay single storey rigid frames rigid frames - frames without		6	15
	sway and with sway.			
	SECOND INTERNAL EXAMINATION			
V	Beams curved in plan: Analysis of cantilever beam curved in plan,	_	7	20
v	analysis of circular beams over simple supports.		7	20
	Plastic Theory: Introduction – plastic hinge concepts – plastic modulus –			
1 71	shape factor – redistribution of moments – collapse mechanisms –			20
VI	Plastic analysis of beams and portal frames by equilibrium and		8	20
	mechanism methods.(Single Storey and Single bay Frames only)			
	END SEMESTER EXAMINATION			

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each Note :

14

1. Each part should have at least one question from each module.

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE305	GEOTECHNICAL ENGINEERING - II	3-0-0-3	2016

Pre-requisite CE208 Geotechnical Engineering - I

Course objectives:

- To impart to the students, in-depth knowledge about the basic concepts and theories of foundation engineering;
- To enable the students to acquire proper knowledge about various methods of foundation analysis for different practical situations.

Syllabus:

Stresses in subsoil due to loaded areas of various shapes, Boussinesq's formula, Newmark's chart, Lateral earth pressure, Rankine's and Coulomb' theories, Influence of surcharge, inclined backfill, water table and layering, Terzaghi's bearing capacity theory for isolated footings, Local and general shear failure, Total and differential settlements, soil improvement techniques, combined footings, raft foundations, well foundation, Problems encountered in well sinking, Pile foundations, Bearing capacity of single pile static and dynamic formulae, Capacity of Pile groups, Machine foundation, Methods of vibration isolation, site investigation, Guidelines for choosing spacing and depth of borings, boring methods, Standard Penetration Test.

Expected Outcomes:

The students will be able to understand

- i. the basic concepts, theories and methods of analysis in foundation engineering;
- ii. the field problems related to geotechnical engineering and to take appropriate engineering decisions.

Text Books :

- 1. Braja M. Das, "Principles of Foundation Engineering", Cengage Learning India Pvt. Ltd., Delhi, 2011.
- 2. K. R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers, 2011
- **3.** Murthy V N S., "Advanced Foundation Engineering", CBS Publishers & Distributors Pvt. Ltd., New Delhi, 2007

References:

- 1. Alam Singh., "Soil Engineering in Theory and Practice", Vol.1, CBS Publishers & Distributors Pvt. Ltd., New Delhi. 2002
- 2. Gopal Ranjan and and Rao A.S.R., "Basic and Applied Soil Mechanics", New Age International (P) Limited, New Delhi, 2002.
- 3. Purushothamaraj P., Soil Mechanics and Foundation Engineering, Dorling Kindersley(India) Pvt. Ltd., 2013
- 4. TengW.E., "Foundation Design", Prentice Hall, New Jersey, 1962.
- 5. Venkataramiah, "Geotechnical Engineering", Universities Press (India) Limited, Hyderabad, 2000.

	COURSE PLAN			
Module	Contents	Hours	Sem. Exam Marks %	
I	Stresses in soil due to loaded areas - Boussinesq's formula for point loads – assumptions [no derivation required] – Comments – numerical problems Vertical stress beneath loaded areas of strip, rectangular and circular shapes(no derivation required)- Newmark's chart[construction procedure not required] - Isobars- Pressure bulbs- numerical problems	6	15	
п	Lateral earth pressure – At-rest, active and passive earth pressures – Practical examples Rankine's and Coulomb' theories[no derivation required]-Influence of surcharge, inclined backfill and water table on earth pressure- numerical problems Earth pressure on retaining walls with layered backfill- numerical problems	6	15	
	FIRST INTERNAL EXAMINATION			
III	Bearing capacity of shallow foundations – Ultimate, safe and allowable bearing capacity Failure mechanism, assumptions and equation of Terzaghi's bearing capacity theory for strip footing[no derivation required] – Terzaghi's formulae for circular and square footings numerical problems Local and general shear failure - Factors affecting bearing capacity – Influence of water table - numerical problems Total and differential settlement- Causes - Methods of reducing differential settlement-Brief discussion on soil improvement through installation of drains and preloading.	7	15	
IV	Combined footings- Rectangular and Trapezoidal combined footings - numerical problems Raft foundations (Design Concepts only) - Allowable Bearing capacity of Rafts on sands and clays - Floating foundation. Deep foundations - Elements of a well foundation – Problems encountered in well sinking – Methods to rectify tilts and shifts	6	15	
	SECOND INTERNAL EXAMINATION			
V	Pile foundations - Point bearing and friction piles - Bearing capacity of single pile in clay and sand[I.S. Static formulae] - numerical problems Dynamic formulae(Modified Hiley formulae only) - I.S. Pile load test [conventional]- Negative skin friction - numerical problems Group action - Group efficiency - Capacity of Pile groups- numerical problems	8	20	

VI	Brief introduction to Machine foundation –Mass spring model for undamped free vibrations - Natural frequency – Coefficient of uniform elastic compression – Methods of vibration isolation Brief introduction to site investigation –Objectives - Guidelines for choosing spacing and depth of borings [I.S. guidelines only] - Auger boring and wash boring methods - Standard Penetration Test – procedure, corrections and correlations.	9	20	
----	---	---	----	--

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN (End semester exam)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

014

Course Code	Course Name	L-T-P- Credits	Year o Introduc		
CE307	GEOMATICS	3-0-0-3	2016	i	
Prerequisite : C	E207 Surveying				
Course objectiv	s: awareness on the advanced surveying techniques	ALA.	M		
• To under	tand the errors associated with survey measureme	ents			
To provid	e a basic understanding on geospatial data acquisi	tion and its	process		
Syllabus:	UNIVERSE	Y			
Traverse Survey	, Curve Surveying, Global Navigation Satel Sensing, Geographical Information System	llite System	, Global Po	sitioning	
Course Outcom	S:				
	nts will possess knowledge on the advanced met	hods of surv	eying, the ins	struments	
Text Books / Refe	rences:	570			
(P) Ltd , 2			-		
2. Prof. T.P. Prakashar	Kenetkar and Prof. S.V. Kulkarni - Surveying an 2004	d Levelling,	Pune Vidyart	thi Griha	
	A Text book of Surveying and Levelling, Khanna	Publishers,	2005		
0	gal - Surveying Vol. II, Tata McGraw Hill Ltd ,Re				
References :		0 6 11		1000	
2. Chang,K	P, Principles of Geographical Information system "Introduction to Geographic Information System		-		
Co. Ltd, 3 George I	seph, "Fundamentals of Remote Sensing", Unive	rsity Press 🤈	2003		
U	, Datums and Map Projections for Remote Sens	•		Whittles	
	Andersen, Edward M Mikhail, Surveying The	eory and Pr	actice, McG	raw Hill	
	g Chang, 'Introduction to GIS', Tata McGraw-H	lill Publishin	g Co. Ltd, 8e	, 2016	
7. Lillesand M and Kiefer W, "Remote Sensing and Image Interpretation". John Wiley and					
Sons,Inc., 2000 COURSE PLAN					
Sem.					
Module	Contents		Hours	Exam Marks %	
	rse Surveying - Methods of traversing, Checks in se computations, Balancing the traverse- methods	closed travers	^{se,} 6	15	

П	Curve Surveying – Elements of simple and compound curves – Method of setting out– Elements of Reverse curve (Introduction only)– Transition curve – length of curve – Elements of transition	8	15	
	curve - Vertical curve (introduction only)			
	FIRST INTERNAL EXAMINATION			
	Global Navigation Satellite System- Types, Global Positioning			
	Systems-Components and Principles, Satellite ranging-calculating			
III	position, Satellite signal structure, code phase and carrier phase	6	15	
	measurements, GPS errors and biases, Application of GPS	1		
	GPS Surveying methods -Static, Rapid static, Kinematic methods –			
	DGPS, Phases of GPS Survey -Planning and preparation, Field			
IV	operation-horizontal and vertical control, data sheet, visibility	6	15	
l	diagram, Processing and report preparation,			
	SECOND INTERNAL EXAMINATION			
V	Remote Sensing : Definition- Electromagnetic spectrum-Energy interactions with atmosphere and earth surface features-spectral reflectance of vegetation, soil and water- Classification of sensors- Active and Passive, Resolution-spatial, spectral radiometric and Temporal resolution, Multi spectral scanning-Along track and across	8	20	
	track scanning			
VI	Geographical Information System- components of GIS, GIS operations, Map projections- methods, Coordinate systems- Geographic and Projected coordinate systems, Data Types- Spatial and attribute data, Raster and vector data representation-Data Input methods-Geometric Transformation-RMS error, Vector data Analysis-buffering, overlay.	8	20	
	END SEMESTER EXAMINATION	· · · · · · · · · · · · · · · · · · ·		

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE309	WATER RESOURCES ENGINEERING	3-0-0-3	2016

Pre-requisite : NIL

Course objectives

- To impart knowledge regarding the availability of water on hydrosphere, its distribution and quantification
- To convey the knowledge on the scientific methods for computing irrigation water requirements
- To communicate fundamental knowledge on reservoir engineering and river engineering

Syllabus

Hydrologic cycle, Precipitation, Infiltration and Evaporation-measurement and data analysis. Runoff-components and computation, Hydrograph, Unit Hydrograph and S-Hydrograph. Irrigation types and methods-Soil water plant relationships, Frequency of irrigation, Computation of crop water requirement. Stream flow measurement -Stage-discharge curve. Meandering of rivers, river training works. Surface water systems: diversion and storage systems, reservoir - estimation of storage capacity and yield of reservoirs - reservoir sedimentation -useful life of reservoir. Groundwater - Aquifer types and properties - Steady radial flow into a well. Estimation of yield of an open well.

Expected Outcome

After successful completion of this course, the students will be able to :

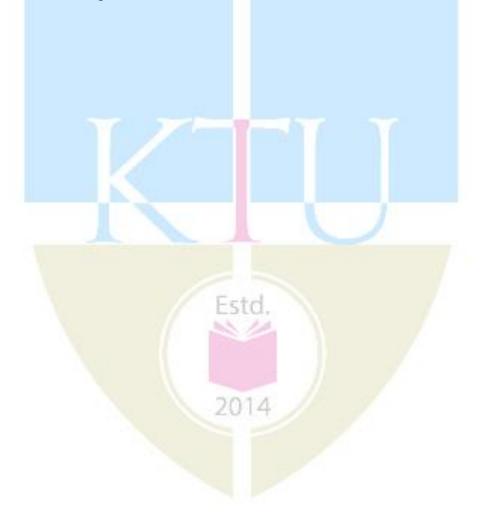
- i. Describe the hydrologic cycle and estimate the different components
- ii. Determine crop water requirements for design of irrigation systems
- iii. Compute the yield of aquifers and wells.
- iv. Know the features of various river training works
- v. Estimate the storage capacity of reservoirs and their useful life.

Text Books:

- 1. Arora, K.R., "Irrigation, Water Power and Water Resources Engineering", Standard Publishers Distributors, New Delhi, 2009.
- 2. Garg S.K, Irrigation Engineering and Hydraulic Structures Khanna Publishers New Delhi 2006.
- 3. Modi. P. N. Irrigation, Water Resources and Water Power Engineering, S.B.H Publishers and Distributors New Delhi 2009.
- 4. Punmia B.C. Ashok K Jain, Arun K Jain, B. B. L Pande, Irrigation and Water Power Engineering, Laxmi Publications (P) Ltd. 2010.

References:

- 1. Asawa. G.L. Irrigation and Water Resources Engineering, New Age International, 2000
- 2. Ojha.C.S.P., R.Berndtsson, P. Bhunya, Engineering Hydrology, Oxford university Press, 2015.
- 3. Patra. K.C., Hydrology and Water Resources Engineering, CRC Press, 2010.
- 4. Sahasrabudhe S.R., Irrigation Engineering & Hydraulic Structures, S.K. Kataria & Sons, 2013.
- 5. Subramanya. K., Engineering Hydrology, Tata Mc Graw Hill, 2011
- 6. Todd D. K., Ground Water Hydrology, Wiley, 2005.
- 7. Ven Te Chow, David R Maidment, L.W Mays., Applied Hydrology, McGraw Hill, 1988
- 8. Warren Viessman, G.L. Lewis, Introduction to Hydrology, Pearson Education, 2003.


	COURSE PLAN			
Module	Contents	Hours	Sem. Exam Marks %	
I	Hydrologic cycle-precipitation-mechanism, types and forms. Measurement of rainfall using rain gauges-optimum number of rain gauges. Estimation of missing precipitation. Representation of rainfall data-mass curve and hyetograph. Computation of mean precipitation over a catchment. Design rainfall - probable maximum rainfall. Infiltration-measurement by double ring infiltrometer. Horton's model. Evaporation-measurement by IMD land pan, control of evaporation.	8	15	
п	Runoff-components of runoff-methods of estimation of runoff- infiltration indices, Hydrograph analysis-Hydrograph from isolated storm-Base flow separation. Unit hydrograph –uses. Assumptions and limitations of unit hydrograph theory. Computation of storm/flood hydrograph of different duration by method of superposition and by development of S– Hydrograph.	8	15	
	FIRST INTERNAL EXAMINATION			
Ш	Irrigation– Necessity, Benefits and ill effects. Types: flow and lift irrigation - perennial and inundation irrigation. Methods: flooding, furrow, sprinkler and drip irrigation (concepts only, no design aspects/problems), Soil water plant relationships, soil moisture constants, Computation of crop water requirement: depth and frequency of Irrigation, Duty and delta, relationship, variation of duty, factors. Computation of design discharge of conveyance channels, Irrigation efficiencies. Consumptive use of water: concept of Evapotranspiration. (No detailed discussion on estimation procedures)	6	15	
IV	Stream flow measurement: methods, Estimation of stream flow by area velocity method only, Stage discharge curve. Meandering of rivers, River training – objectives and classification, description of river training works.	6	15	
	SECOND INTERNAL EXAMINATION			
V	Surface Water system: diversion and storage systems, necessity. River flow: Flow duration Curve, Firm yield. Reservoirs-types of reservoirs, zones of storage reservoir, reservoir planning-storage capacity and yield of reservoirs-analytical method and mass curve method. Reservoir sedimentation: trap efficiency, methods for control. Computation of useful life of reservoir.	7	20	
VI	Ground water : vertical distribution of groundwater, classification of saturated formation, water table, Aquifer properties : Porosity, Specific yield, specific retention, Types of aquifers. Darcy's law, co-efficient of permeability, Transmissibility. Wells- Steady radial flow into a fully penetrating well in Confined and Unconfined aquifers. Estimation of yield of an open well, pumping and recuperation tests. Tube wells – types. END SEMESTER EXAMINATION	7	20	

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

2 Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE361	ADVANCED CONCRETE TECHNOLOGY	3-0-0-3	2016

Prerequisite: CE204 Construction Technology,

Course objectives:

- To understand the behaviour of fresh and hardened concrete.
- To make aware the recent developments in concrete technology
- To understand factors affecting the strength, workability and durability of concrete
- To impart the methods of proportioning of concrete mixtures

Syllabus:

Review of Materials for concrete making. chemical and physical processes of hydration, Properties of fresh concrete - Mineral admixtures - Chemical Admixtures - Proportioning of concrete mixtures. Properties of hardened concrete- Durability of concrete, Non-destructive testing of concrete – special concretes

Expected Outcomes:

The students will be able to:

- i. Understand the testing of concrete materials as per IS code
- ii. Know the procedure to determine the properties of fresh and hardened of concrete
- iii. Design the concrete mix using ACI and IS code methods
- iv. Select and Design special concretes depending on their specific applications
- v. Gain ideas on non-destructive testing of concrete

Text books:

- 1. Neville A.M., "Properties of Concrete", Trans-Atlantic Publications, Inc.; 5e, 2012
- 2. Job Thomas., "Concrete Technology", Cenage learning,
- 3. R. Santhakumar " Concrete Technology", Oxford Universities Press, 2006
- 4. Shetty M. S., Concrete Technology", S. Chand & Co., 2006

References:

- 1. Mehta and Monteiro, "Concrete-Micro structure, Properties and Materials", McGraw Hill Professional
- 2. Neville A. M. and Brooks J. J., Concrete Technology, Pearson Education, 2010
- 3. Lea, Chemistry of Cement and Concrete", Butterworth-Heinemann Ltd, 5e, 2017
- 4. Bungey, Millard, Grantham Testing of Concrete in Structures- Taylor and Francis, 2006

	COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %		
Ι	Aggregates: Review of types; sampling and testing; effects on properties of concrete, production of artificial aggregates. Cements: Review of types of cements, chemical composition; properties and tests, chemical and physical process of hydration,	6	15		

	.Blended cements.			
II	 Properties of fresh concrete - basics regarding fresh concrete - mixing, workability, placement, consolidation, and curing, segregation and bleeding Chemical Admixtures: types and classification; actions and interactions; usage; effects on properties of concrete. 		7	15
	FIRST INTERNAL EXAMINATION			1
Ш	 Mineral Admixtures: Flyash, ground granulated blast furnace slag, metakaolin, rice-husk ash and silica fume; chemical composition; physical characteristics; effects on properties of concrete; advantages and disadvantages. Proportioning of concrete mixtures: Factors considered in the design of mix . BIS Method, ACI method. 	Л L	6	15
IV	Properties of hardened concrete : Strength- compressive tensile and flexure - Elastic properties - Modulus of elasticity - Creep- factors affecting creep, effect of creep - shrinkage- factors affecting shrinkage, plastic shrinkage, drying shrinkage, autogeneous shrinkage, carbonation shrinkage		6	15
	SECOND INTERNAL EXAMINATION			
V	 Durability of concrete: Durability concept; factors affecting, reinforcement corrosion; fire resistance; frost damage; sulfate attack; alkali silica reaction; concrete in sea water, statistical quality control, acceptance criteria as per BIS code. Non-destructive testing of concrete: Surface Hardness, Ultrasonic, Penetration resistance, Pull-out test, chemical testing for chloride and carbonation- core cutting - measuring reinforcement cover. 		9	20
VI	 Special concretes - Lightweight concrete- description of various types -High strength concrete - Self compacting concrete -Roller compacted concrete – Ready mixed concrete – Fibre reinforced concrete - polymer concrete Special processes and technology for particular types of structure - Sprayed concrete; underwater concrete, mass concrete; slip form construction, Prefabrication technology 	7	8	20
	END SEMESTER EXAMINATION			

20

Maximum Marks :100

Exam Duration: 3 Hrs

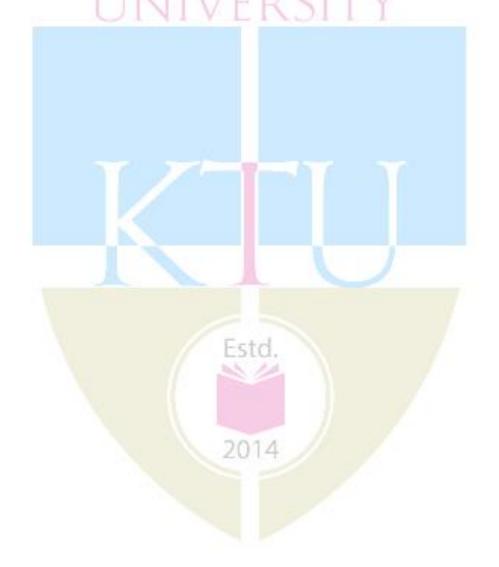
Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note: 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name L-T-P- Credits	Year Introdu	
CE363	GEOTECHNICAL INVESTIGATION 3-0-0-3	201	6
Pre-requi	site : CE208 Geotechnical Engineering - I		
to • To the	ojectives: impart to the students, a clear idea about how a geotechnical investible planned and executed; impart in-depth knowledge about the various methods of geotechnic field tests to be conducted in different situations.	N	
exploratio test – Pro disturbance Designatio Expected i. The va	s of soil exploration – Planning of a sub-surface exploration prog n - Sounding methods – Standard Penetration Test - Cone Penetrati essure meter test - Geophysical methods — pile load tests -Factor e and methods to minimise them –Types of samplers and Core reta on – Sub-soil investigation report Outcomes: e students will be able to understand the procedure, applicabilit rious methods of geotechnical investigation; bility of the students in making proper engineering judgments and in ta	on Tests - P rs affecting iners –Rock and limita	late load sample Quality
Text Bool 1. Go Lin 2. Ve	pal Ranjan and Rao A.S.R., "Basic and Applied Soil Mechanics", New nited, New Delhi, 2002. nkataramaiah, "Geotechnical Engineering", Universities Press (India)	Age Internat	
Reference 1. Ar 2. Jos 3. Pu Pv	00. s: ora K.R., "Geotechnical Engineering", Standard Publishers Distributors seph E. Bowles, 'Foundation Analysis and Design', Mc. Graw Hill Inc., rushothamaraj P., Soil Mechanics and Foundation Engineering, Dorl t. Ltd., 2013 rzaghi K. and R. B. Peck, Soil Mechanics in Engineering Practice, John V COURSE PLAN	New York, 19 ng Kindersl	988.
Module	Contents	Hours	Sem. Exam Marks %
Ι	Introduction and practical importance - Objectives of soil exploration – Planning of a sub-surface exploration programme –Collection of existing information, reconnaissance, preliminary and detailed investigation - I.S. and other guidelines for deciding the number, size spacing and depth of boreholes	f 1 7	15


Ш	 Methods of exploration - Open pits – Auger boringWash boring, percussion drilling, rotary drilling – Comparison of the methods of exploration- Stabilization of bore holes Plate load test – Procedure, uses and limitations – modulus of subgrade reaction- Solution of numerical problems using plate load test data 	6	15
	FIRST INTERNAL EXAMINATION		
III	Sounding methods Standard Penetration Test – Procedure – corrections to be applied to observed N values – Procedure for estimation of representative average N value – Numerical examples - Factors influencing the SPT results and precautions to obtain reliable results – Merits/drawbacks of the test – Correlations of N value with various engineering and index properties of soils Static Cone Penetration Test – Procedure – Merits/drawbacks – Correlation of static CPT results with soil properties -Dynamic Cone Penetration Test – Procedure – Merits/drawbacks – Critical comparison of SPT, static CPT and dynamic CPT	8	15
IV	Geophysical methods – Seismic refraction method – Procedure, uses, limitations – Solution of numerical problems to estimate the velocity of seismic waves and the thickness of upper layer of a two-layered soil system - Electrical resistivity method – Electrical profiling and electrical sounding – Procedure, uses, limitations Pressure meter test - Procedure –Uses - limitations	6	15
	SECOND INTERNAL EXAMINATION		1
V	Soil sampling – Undisturbed, disturbed, and representative samples – Chunk and tube samples – Factors affecting sample disturbance and methods to minimise them –Area ratio - Inside clearance - Outside clearance - Recovery ratio –Ball check valve – Handling and transportation of samples – Extrusion of samples Types of samplers – Thin walled sampler – Piston sampler – Split spoon sampler – Methods for collection of sand samples from beneath the water table - Core retainers	8	20
VI	Rock Quality Designation –Bore log – Soil profile – Sub-soil investigation report Static pile load test – procedure for estimation of safe load - Cyclic pile load test –Procedure for separation of end bearing and skin friction resistance- solution of numerical problems using static and cyclic pile load test data	7	20
	END SEMESTER EXAMINATION		

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE365	FUNCTIONAL DESIGN OF BUILDINGS	3-0-0-3	2016

Prerequisite : CE204 Construction Technology

Course objectives:

- To understand the acoustical design concepts and noise control techniques
- To impart the fundamental concepts of natural and artificial lighting designs
- To provide principles of climatic conscious design of buildings with special emphasis on tropical climates.
- To understand the apparent position of sun with respect to earth during different periods of the year and apply it in computation of solar radiation and design of shading devices.

Syllabus:

Acoustics : Physics of sound- Behavior of sound- Sound insulation and reverberation control Lighting: Principles- Day lighting and artificial lighting – design methods

Thermal design of buildings: Climatic elements – classification- thermal comfort and indices-solar radiation calculations and design of shading devices.

Thermo physical properties of building materials and thermal control- passive and active building design- Steady and periodic heat flow through building envelope. Concept of green building.

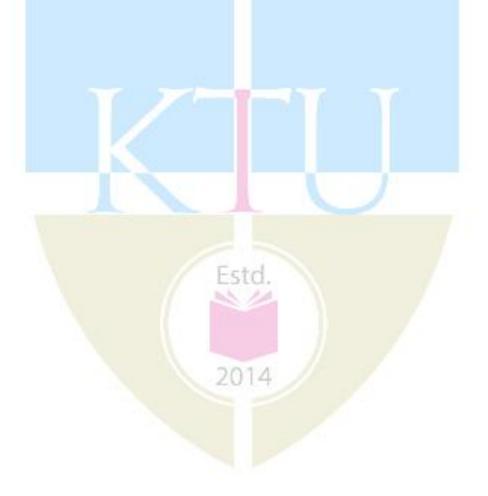
Expected Outcomes:

On completion of the course, the students will be able to:

- i. Analyze and make effective decisions in use of principles of functional planning of the buildings with respect to Acoustics and Lighting and Thermal design of buildings in various climatic zones that the student may encounter in his/her professional career.
- ii. Select different building materials and explain the manner in which they can be used in different types of buildings with respect to various functional requirements like acoustics, lighting and thermal comfort.
- iii. Apply the techniques learned to the estimate solar radiation falling on different surfaces of the buildings, design shading devices to protect from direct sunlight, design of energy efficient, functionally comfortable buildings, low energy buildings and green buildings.

References :

- 1. Ajitha Simha.D, Building Environment, Tata McGraw Hill Publishing Co., New Delhi, 1985
- 2. Bureau of Indian standards, Handbook on Functional Requirement of Buildings SP:41(S and T) 1987
- 3. Givoni. B Man,. Climate and Architecture, Applied Science Publication, 1976
- 4. Knudsen V.O. and Harris C.M., Acoustical Design in Architecture, John Wiley, 1980
- 5. Koenigseberger, Manual of tropical Housing and Building Part I Climatic design, Orient Longman, 2011
- 6. Krishnan, Climate responsive architecture, Tata McGraw Hill, 1999
- 7. M David Egan, Architectural Acoustics, J.Ross Publishing, 2007
- 8. Olgay Victor, Design with climate-A bioclimatic approach to architectural regionalism- Princeton University press-1963


	COURSE PLAN		
Module	Contents	Hours	Sem. Exam Marks %
I	Acoustics, fundamentals: Physics of sound-Frequency, period amplitude. Intensity of sound- Watts/m ² - Bel- Decibel scales- dBA-Phon. Addition of sound levels. Human Audibility range. Behavior of sound in free and reverberant fields. Noise- allowable limits-effect of noise on human-Air and structure born noises-equivalent noise levels-day and night equivalent.	7	15
II	Acoustics, applications: Measures of noise control- Source-path and receiving end. TL value and computation of TL value, Flanking paths. Sound absorption-materials and fixings. Reverberation-Sabines formula-Eyrings modification. Acoustical defects- acoustical design of auditoriums and small lecture halls. Acoustical considerations of offices, hospitals and Industrial buildings.	7	15
	FIRST INTERNAL EXAMINATION		
III	Lighting, Natural: Visual tasks – Natural lighting- illumination requirements for various buildings –principles of day lighting – day light factor and its components- Design of side-lit windows-BIS and CBRI methods-skylights	6	15
IV	Lighting, Artificial : Artificial lighting- illumination requirements- lux meter – lamps and luminaries – polar distribution curves– Colour temperature and colour rendering index- glare -Design of artificial lighting – lumen method – point by point method. Basic idea of street lighting and outside lighting	6	15
	SECOND INTERNAL EXAMINATION		
V	Thermal comfort: Factors affecting thermal comfort Effective temperature –Thermal comfort indices-ET-CET Charts- Bioclimatic chart- Psychrometry and Psycrometric chart. Earth-Sun relationship: Sun's apparent movement with respect to the earth. Solar angles-Computation of solar radiation on different surfaces-solar path diagram-shadow-throw concept and design of shading devices	8	20
VI	 Heat flow through building envelope: Thermo physical properties of building materials: Thermal quantities – heat flow – thermal conductivity – resistance and transmittance and surface coefficient - Sol- air temperature concept- solar gain factor. Thermal transmittance of structural elements – thermal gradients – heat gain/loss calculation. Periodic heat flow – time lag and decrement factor. Design approaches: Climate conscious designs- Climatic zones in India- orientation and shape of buildings in different climatic zones-Passive solar-Active solar and Active approaches. Requirements of buildings in tropical areas-Thermal insulation-Introduction to the concept of green-building 	8	20

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

2 Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course Code	Course Name	L-T-P- Credits		ear of duction					
CE367	WATER CONVEYANCE SYSTEMS	3-0-0-3	2	016					
Pre requi	Pre requisite : CE206 : Fluid Mechanics - II								
Course of									
 To str To 	o understand the mechanics of flow through open channel. develop the ability to analyse the flow in a channel in ord uctures. enable identification of the components of pipe network so familiarize with analysis of water distribution systems.	LAN	canals a	nd canal					
Syllabus :		CUL							
change in channels f best hydra computati Head loss pumps and distributio Expected	 nnel flow- Pressure distribution in curvilinear flows. Chan width. Uniform flow-composite sections, Hydraulic exp. For uniform flow-Non erodible channel-Minimum permiss aulic section. Erodible channels which scour but do not ons. Unsteady flow-Gradually and Rapidly varied unsteady due to friction in pipes, Friction factor for smooth a d special valves, pipe network types and parameter interrel on network using Hardy cross method Outcomes: The students will be able to predict the behaviour different conditions. i. The students will understand the underlying principle involved in analysis of water distribution system and a twiced pipe network. 	onents N ar ible velocity silt Gradua y flow. nd rough pi ationships A of flow in a es and the de	nd M D -channe ally var pes, Re analysis a chann esign pa	esign of el slopes- ied flow servoirs, of water el under rameters					
Text Book	a typical pipe network.	1							
1. Bh Ho 2. Ra 3. Su	ave P. R. and R. Gupta, Analysis of Flow in Water Distribution buse, 2013 jesh Srivastava, Flow through Open Channels, Oxford Universi bramanya.K. Flow in Open Channels, Tata McGraw Hill I	ty Press, 2007	'.	-					
 References : 1. Chow V. T., Open Channel Hydraulics, McGraw Hill Book Co. New York, 1990. 2. Hanif Chaudhry.M., Open Channel Flow, Springer, 2008. 3. Hubert Chanson, Hydraulics of Open channel flow, Elsevier Butterworth-Heinemann, 2004. 4. Lary W Mays, Water distribution system Hand book, Mc Graw Hill, 2000. 5. Modi P. N. and S. M. Seth, Hydraulics & Fluid Mechanics, S.B.H Publishers, New Delhi, 2002 6. Richard H French, Open Chanel Hydraulics, Mc Graw Hill, 2000 7. Walksi T M, Analysis of water distribution System, Van Nostrand Reinheld G, New York, 1984 									
	COURSE PLAN								
Module	Contents	I	Iours	Sem. Exam Marks %					

Ι	Open channel flow- Pressure distribution in curvilinear flows. Application of specific energy principle to channel transitions with hump or change in width. Uniform flow-composite sections, Equivalent roughness, Hydraulic exponents N and M	6	15
II	Design of channels for uniform flow-Non erodible channel- Minimum permissible velocity-channel slopes-best hydraulic section. Erodible channels which scour but do not silt-Methods of approach-Method of permissible velocity-Tractive force – Method of tractive force-stable hydraulic section.	6	15
	FIRST INTERNAL EXAMINATION		
III	Gradually Varied flow computations- Direct integration method, standard step method, Unsteady flow-Gradually varied unsteady flow, Rapidly varied unsteady flow channels- Positive surges, Negative surges.(No numerical problem from negative surges)	7	15
IV	Head loss due to friction in pipes-Nikuradse experiment with artificially roughened pipe, Moody diagram, Friction coefficient for laminar and turbulent flows, reduction of carrying capacity with age. Hazen William's formula. Reservoirs-Impounding reservoir, Service and Balancing reservoir. Two reservoir system, Three Reservoir system. Pumps- system head discharge curve and pump head discharge curve. Special valves-Check valve, Pressure reducing valve- modes of operation(No numerical problem with pressure reducing valve)	6	15
	SECOND INTERNAL EXAMINATION		
V	Pipe Network types and parameter interrelationships. Rules for solvability of pipe networks.Formulation of equations-Basic unknown parameter, Pipe discharge equations, Nodal Head equations, Pipe discharge correction equations, Nodal Head correction equations		20
VI	Analysis of water distribution network- Single and multisource networks with known pipe resistances- Hardy cross method- Method of balancing head, Method of balancing flow.	9	20
	FND SEMESTER EXAMINATION		

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN (End semester examination)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course	Comme Name	L-T-P-	Ye	ar of				
Code	Course Name	Credits	Intro	duction				
CE369	DISASTER MANAGEMENT	3-0-0-3	2	016				
Prerequisi	Prerequisite: NIL							
Course ob	jectives:							
• To j	provide an overview of the common hazards and their d	ynamics						
• To :	inculcate the basic concepts of disaster management		6					
Syllabus :	APLABUU KA	LAN						
	tal concepts of hazards and disasters: Relationsh	-						
-	nt, implications. Introduction to key concepts an		ogy of	hazard,				
	ty, exposure, risk, crisis, emergencies, Disasters, Resilien							
Impacts.	atural Disasters I- Earth quakes, Landslides. Classification	on of Disaste	rs and i	hature of				
-	Natural Disasters II- Floods, Coastal disasters-Tidal v	waves Cyclo	nes T	sunamis				
	on of Disasters and nature of Impacts.	indices, eyen	160, 1	Junuinio.				
	nthropogenic Disasters I – Soil degradation and desertifie	cation.						
Types of	Anthropogenic Disasters II- Fundamental concepts	of water an	nd atm	ospheric				
pollution.								
	<mark>l dis</mark> aster management plans for flo <mark>ods</mark> , cyclones, tidal w	aves.	_					
Expected (
The studen		576.1						
disa	n the general ideas about the processes involved in isters			1 0				
	lerstand the concepts of disaster management and mea	sures taken	to miti	gate and				
	tain common episodes of disasters							
References		с · ″т	1 1 1 1 1 1	0000				
	drew, S., "Environmental Modeling with GIS and Remote yabandu, M. and Sahni P. "Disaster Risk Reduction in So	0.		2				
	lia), 2003.	uurrioid (ri	cittlee 1					
3. Bell	, F.G., "Geological Hazards: Their assessment, avoidance	e and mitigat	ion", E	& FN				
SPC	N Routledge, London. 1999							
	sler, J.D., <mark>"Manual of Geo</mark> spatial Science and Tec <mark>hnology</mark> vid Alexander, "Natural Disasters", Research Press, New		l Franci	s, 2001				
	thews, J.A., "Natural hazards and Environmental Chang		uire. Iar	Mason.				
200		, , , , , , , , , , , , , , , , , , , ,						
	- igating Natural Disasters, Phenomena, Effects and option	is, A Manual	for pol	icv				
	kers and planners, United Nations. New York, 1991	(), / / ////////////////////////////////	ioi poi	icy				
	k Carter. W., "Disaster Management - A Disaster Manage	ar's Handhoo	k" Aci	an				
	relopment Bank, Philippines. 1991	.1 5 1 101000	. ASI					
Development bank, i implifies. 1991								
COURSE PLAN								
				Sem.				
Module	Contents	L	Iours	Exam				
mouule	Contents	1	iours	Marks				
				%				

I	Fundamental concepts of hazards and disasters: Relationship between disasters and development, implications. Introduction to key concepts and terminology of hazard, vulnerability, exposure, risk, crisis, emergencies, Disasters, Resilience.	7	15
II	Types of Natural Disasters I- Earth quakes, Landslides. Classification and nature of impacts.	7	15
	FIRST INTERNAL EXAMINATION		
III	Types of Natural Disasters II- Floods, Coastal disasters- Cyclones, Tsunamis. Classification and nature of impacts.	7	15
IV	Types of Anthropogenic Disasters I– soil and soil degradation, desertification.	7	15
	SECOND INTERNAL EXAMINATION		
V	Types of Anthropogenic Disasters II-Fundamental concepts of water and atmospheric pollution.	7	20
VI	Hazard and disaster management plans for floods, cyclones, tidal waves.	7	20
	END SEMESTER EXAMINATION		

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course	Code	Course Name	L-T-P- Credits		r of luction			
CE3	71	Environment and Pollution	3-0-0-3	20	16			
Prerequis	Prerequisites: Nil							
• To	 Course objectives: To understand the various types of environmental and industrial pollution, pollutants, related diseases and their causes 							
• To	impart th	ne various management techniques available for po	ollution abate	ement				
Water poli Solid was pesticide occupation Expected	lution, cl ates, sour pollution al health Outcom i. To ii. To pol s / Refere B.C.Bha	have a basic knowledge of various pollution source have an awareness of the various methods of preve lutant nces: rtia, Environmental Pollution and Control in	eases, water rbanization, neasures, ind es and their e ention and rec	quality s land deg dustrial j ffects duction of	tandards. gradation, pollution,			
	Danny I Gilbert I	Publishers, Delhi, 2001. D Reible, Fundamentals of Environmental Enginee M Masters, Wendell P Ela, Introduction to Environ , Pearson Education, 2007	U					
	McGrav	S Peavy, Donald R Rowe, George Tchobanoglous WHill Education, 1984			-			
6. 7.	 Kurian Joseph & R.Nagendran, Essentials of Environmental Studies, Pearson Education (Singapore) Pvt.Ltd, New Delhi, 2004. N.N Basak, Environmental Engineering, McGrawHill Education, Reprint 2015 P.AarneVesiland, Introduction to Environmental Engineering, PWS publishing company Boston, 1997. Suresh K Dhameja, Environmental Engineering and Management, S.K.Kataria& Sons, Delhi, 2010. 							
		COURSE PLAN		1				
Module		Contents		Hour s	Sem. Exam Marks %			
Ι	Compo Carbon Introdu environ	ment-Introduction-Multidisciplinary Nature nents of Environment, Ecology, Ecosystem- Mater and Nitrogen cycles action: Classification of Pollution and Po ment, Pollution related Diseases, Basic requir environment	llutants of	6	15			

healthy environment

II	Air Pollution: Primary and Secondary Pollutants, Industrial Pollution, Ambient Air Quality Standards, Types of air pollutants-sulfur dioxide, nitrogen dioxide, carbon monoxide, particulate matter. Effects of air pollutants on human, vegetation and environment	6	15
	FIRST INTERNAL EXAMINATION		
III	Water Pollution: Point and Non-point Source of Pollution, Major Pollutants of Water, Physical, chemical and biological characteristics of water, Water borne diseases, Water Quality standards	7	15
IV	Solid Waste: Classification of Solid Waste, Composition and Characteristics of Solid Waste, Plastic wastes; Segregation of Solid waste, recycling and reuse of solid wastes, E-waste: Sources of generation,.	7	15
	SECOND INTERNAL EXAMINATION		
V	Land/Soil Pollution: Effects of urbanization on land degradation, Impact of Modern Agriculture on Soil, pesticide pollution, Effect on Environment and Life sustenance, Abatement measures	8	20
VI	Noise pollution: Sources of Noise, Effects of Noise, measurement of noise, Equivalent sound pressure level, Control measures	8	20

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

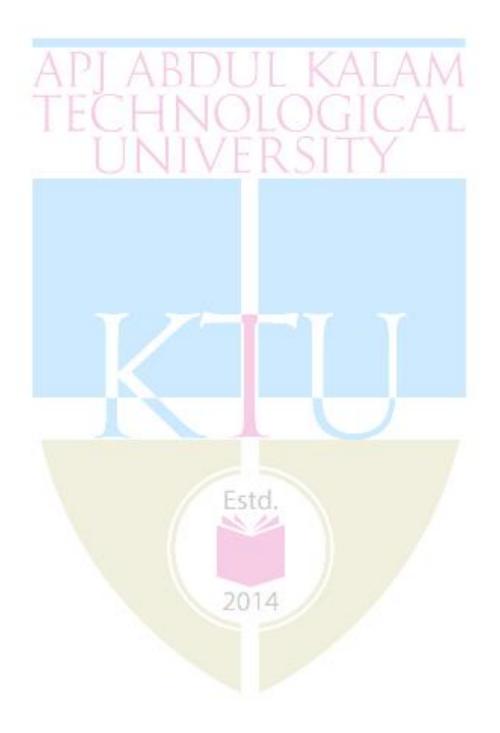
2014

Course Co	le	Course Name L-T-P- Credits				ar of luction
CE373	AD	ADVANCED MECHANICS OF MATERIALS 3-0-0-3		20)16	
Prerequisite	: CE201 Mecha	nics of Solids				
 To remember Mech To show Mech To show Mech To show Mech To show State Syllabus: State State apply apply<!--</td--><td colspan="5"> Course objectives: To review and make more useful the methods and results presented in the first course on Mechanics of Materials. To show the limitations of the ordinary formulas of Strength of Materials, to consider the conditions under which these limitations are significant and to extend the subject to include a variety of important topics more complex than those usually involved in a first course. Syllabus: Stress, Principal stresses, Strain energy, Failure & Failure criteria, Elements of theory of elasticity, strains and compatibility, Beams on elastic foundation, Curved Beams, Torsion Expected Outcomes: The students will be able to apply the concepts of stress, strain and strain energy use failure criteria and fracture mechanics and buckling in analysis apply plane state of stress and strains to problems use the concept of beams on elastic foundations and curved beams use the principles of torsion for analysis Text Books R.D. Cook and W.C. Young, Advanced Mechanics of Materials, 2nd edition, Prentice Hall Intl,Inc.1999 Srinath L.S, Advanced Mechanics of Solids, Tata McGraw Hill, 3e, 2009 </td><td>the nclude a heory of ice Hall Wiley &</td>	 Course objectives: To review and make more useful the methods and results presented in the first course on Mechanics of Materials. To show the limitations of the ordinary formulas of Strength of Materials, to consider the conditions under which these limitations are significant and to extend the subject to include a variety of important topics more complex than those usually involved in a first course. Syllabus: Stress, Principal stresses, Strain energy, Failure & Failure criteria, Elements of theory of elasticity, strains and compatibility, Beams on elastic foundation, Curved Beams, Torsion Expected Outcomes: The students will be able to apply the concepts of stress, strain and strain energy use failure criteria and fracture mechanics and buckling in analysis apply plane state of stress and strains to problems use the concept of beams on elastic foundations and curved beams use the principles of torsion for analysis Text Books R.D. Cook and W.C. Young, Advanced Mechanics of Materials, 2nd edition, Prentice Hall Intl,Inc.1999 Srinath L.S, Advanced Mechanics of Solids, Tata McGraw Hill, 3e, 2009 					the nclude a heory of ice Hall Wiley &
5. Timoshenko S.P and Goodier J.N, Theory of elasticity, McGraw Hill, 3e, 1970 COURSE PLAN						
Module	Contents		Hours	Sem. Exam Marks %		
I st	Stress, Principal stresses, Strain energy: Stress at a point – stress on an arbitrarily oriented plane-stress transformations- strain theory-principal stresses & strains (2d & 3d)- Generalized Hooke's law-Equations of thermo-elasticity for isotropic materials-strain energy density- stress concentration.615				15	

II	Failure & Failure criteria: Modes of failure –yield failure criteria- introduction to fracture mechanics-cracks & brittle fracture-fatigue-elastic and inelastic buckling.	6	15		
	FIRST INTERNAL EXAMINATION				
ш	Elements of theory of elasticity : Transformation of stress and strains: Plane state of stress - equations of transformation - principal stresses. Plane state of strain – analogy between stress and strain transformation - Mohr's circles of stress and strain – strain rosettes.	6	15		
IV	Displacements-strains and compatibility-equilibrium equations and boundary conditions- stress field solutions for plane stress problems- polynomial solutions in Cartesian coordinates-displacements calculated from stresses-plane stress problems in polar coordinates.	6	15		
	SECOND INTERNAL EXAMINATION				
V	Beams on elastic foundation: General theory-infinite beam subjected to concentrated load- beams with uniformly distributed loads- short beams Curved Beams: Winkler Bach formula-Equivalent area method-Circumferential stresses in Curved beams with I and T sections- Closed ring with circumferential load and uniform loads -deflections of sharply curved beams.	9	20		
VI	Torsion :Torsion of a cylindrical bar of circular cross section- St. Venant's semi inverse method-stress function approach-elliptical, equilateral triangle & narrow rectangular cross sections - Prandtl's membrane analogy-Hollow thin wall torsion members-multiply connected cross sections- thin wall torsion members with restrained ends.	9	20		
	END SEMESTER EXAMINATION				

Estd.

QUESTION PAPER PATTERN (End semester examination)


Maximum Marks :100

Exam Duration: 3 Hrs

2014

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note: 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course code	Course Name	L-T-P - Credits	Year of	
			Introduction	
**341	DESIGN PROJECT	0-1-2-2	2016	
Prerequisite : Nil				

Course Objectives

- To understand the engineering aspects of design with reference to simple products
- To foster innovation in design of products, processes or systems
- To develop design that add value to products and solve technical problems

Course Plan

Study :Take minimum three simple products, processes or techniques in the area of specialisation, study, analyse and present them. The analysis shall be focused on functionality, strength, material, manufacture/construction, quality, reliability, aesthetics, ergonomics, safety, maintenance, handling, sustainability, cost etc. whichever are applicable. Each student in the group has to present individually; choosing different products, processes or techniques.

Design: The project team shall identify an innovative product, process or technology and proceed with detailed design. At the end, the team has to document it properly and present and defend it. The design is expected to concentrate on functionality, design for strength is not expected.

Note : The one hour/week allotted for tutorial shall be used for discussions and presentations. The project team (not exceeding four) can be students from different branches, if the design problem is multidisciplinary.

Expected outcome.

The students will be able to

- i. Think innovatively on the development of components, products, processes or technologies in the engineering field
- ii. Analyse the problem requirements and arrive workable design solutions

Fetal

Reference:

Michael Luchs, Scott Swan, Abbie Griffin, 2015. Design Thinking. 405 pages, John Wiley & Sons, Inc

Evaluation

First evaluation (Immediately after first internal examination)20 marksSecond evaluation (Immediately after second internal examination)20 marksFinal evaluation (Last week of the semester)60 marks

Note: All the three evaluations are mandatory for course completion and for awarding the final grade.

Course Code	Course Name	L-T-P-Credits	Year of Introduction	
CE331	MATERIAL TESTING LAB -II	0-0-3-1	2016	
Pre-requisite: C	E204 Construction Technology			
Course objectiv	es:			
	experimental evaluation of properties of the	materials used for conc	rete	
	the characteristics of the materials.	NALA	V1	
List of Experim		A LC A	1	
	ation of the Specific Gravity and Soundr		mag of Comant and	
	ation of the Standard Consistency, Initial ressive strength of Cement.	and Final Setting 11	mes of Cement and	
	fine aggregate – specific gravity, bulking,	sieve analysis, finen	ess modules moistur	
	bulk density	,	110000100, 1101010	
	coarse aggregate - specific gravity, sieve a	analysis, fineness mo	dulus, bulk density.	
	Fresh Concrete: Workability : Slump, Vee			
6. Determin	ation of the Compressive Strength of Cor	crete by Cube and C	ylinder.	
	out the Split Tensile and Flexural strength	h of Concrete.		
-	sive strength of Brick as per IS			
	se strength of tiles			
	ration of Mix Design of Concrete by IS m			
11. Non desu	ructive tests (rebound hammer & ultrasor	inc pulse velocity)		
Books/Manuals	/References:-			
Dooks/ manuals	/References			
1. Concrete	Lab Manual, TTTI Chandigarh			
	nbhir, Concrete Manual, Dhanpat Rai &	Sons, Delhi.		
3. M.S.Shet	ty, Concrete Technology, Theory and Pra	actice, S.Chand& Co	ompany, 2014	
	latest IS codes on Aggregates, Cement &	Concrete [269, 383,	238 6, 10262(2009),	
SP23]				
	Estd.			
	2014			
	2014			

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE333	GEOTECHNICAL ENGINEERING LAB	0-0-3-1	2016
Pre-requisite : CE208 Geotechnical Engineering - I			
Course objectives:			
• To understand the laboratory tests used for determination of physical, index and Engineering properties of soil.			
List of Experiments:			

- Determination of Water Content, Specific Gravity and Shrinkage Limit 1.
- 2. Field Density determination and Sieve Analysis
- 3. Atterberg Limits (Liquid Limit and Plastic Limit)
- 4. Hydrometer Analysis
- 5. Direct Shear test
- 6. **Standard Proctor Compaction Test**
- 7. Permeability Test and Unconfined Compression Test
- 8. **Consolidation Test**
- 9. **Swelling Test**
- 10. Heavy compaction
- California Bearing Ratio Test. 11.

Expected Outcomes:

The students will

- i. have thorough knowledge about the procedures of laboratory tests used for determination of physical, index and engineering properties of soils
- have the capability to classify soils based on test results and interpret engineering behavior ii. based on test results
- be able to evaluate the permeability and shear strength of soils iii.
- iv. be able to evaluate settlement characteristics of soils
- be able to evaluate compaction characteristics required for field application v.

Text Books / References:

- 1. IS codes relevant to each test
- 2. C. Venkatramaiah, Geotechnical Engineering, New Age International publishers, 2012
- 3. Gopal Ranjan and A. S. R. Rao, Basic and Applied Soil Mechanics, New Age International Publishers, 2012
- 4. K. R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers, 2011